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Abstract We investigate the phase diagram of disordered copolymers at the interface be-
tween two selective solvents, and in particular its weak-coupling behavior, encoded in the
slope mc of the critical line at the origin. We focus on the directed walk case, which has
turned out to be, in spite of the apparent simplicity, extremely challenging. In mathemati-
cal terms, the partition function of such a model does not depend on all the details of the
Markov chain that models the polymer, but only on the time elapsed between successive
returns to zero and on whether the walk is in the upper or lower half plane between such
returns. This observation leads to a natural generalization of the model, in terms of arbitrary
laws of return times: the most interesting case being the one of return times with power law
tails (with exponent 1 + α, α = 1/2 in the case of the symmetric random walk). The main
results we present here are:

(1) the improvement of the known result 1/(1 + α) ≤ mc ≤ 1, as soon as α > 1 for what
concerns the upper bound, and down to α ≈ 0.65 for the lower bound.

(2) a proof of the fact that the critical curve lies strictly below the critical curve of the
annealed model for every non-zero value of the coupling parameter.
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We also provide an argument that rigorously shows the strong dependence of the phase
diagram on the details of the return probability (and not only on the tail behavior). Lower
bounds are obtained by exhibiting a new localization strategy, while upper bounds are based
on estimates of non-integer moments of the partition function.

Keywords Directed polymers · Disorder · Copolymers at selective interfaces ·
Rare-stretch strategies · Fractional moment estimates

1 Introduction

Copolymers (or heteropolymers) are chains of non-identical monomer units. We focus here
on the case in which some of the monomer units have an affinity for a solvent A, while the
affinity of the others is for a solvent B. Affinities—below we will call them charges—are
fixed along the polymer chain and we will model them as quenched disorder. The medium in
which the (co)polymer fluctuates is the one schematized in Fig. 1: the two solvents occupy
half of the space and they are separated by a sharp (and flat) interface. Copolymer models
have an extended literature, notably models based on self-avoiding walks have been studied
(see e.g. [29] and references therein), but a very simple model, that turned out to be never-
theless extremely challenging, has been proposed in [14]. It is a two-dimensional, in fact a
(1 + 1)-dimensional model in which the self-avoidance property is enforced by considering
directed walks and of course the walk steps are the monomer units. The nth monomer of the
chain carries a random charge εn (which corresponds to (ωn + h) in formula (2.1) below),
which can be either positive or negative. Here random refers to the fact that the charges are
not placed in a homogeneous or periodic way along the chain, but they are (a realization of)
a collection of independent and identically distributed (IID) random variables. The charge εn

quantifies the chemical affinity of the nth monomer with the solvents so that the monomer
has an energetic preference for being placed in the solvent A (for example, oil) if εn > 0
and in solvent B (water) if εn < 0. It is then intuitive that an energy-entropy competition
takes place—maximizing the energy by placing as many monomers as possible into their
preferred solvent, versus wandering away from the interface and gaining in entropy—and
this leads to a (non-trivial, as we will see) localization-delocalization transition, when the
temperature or the mean of εn is varied.

The localization/delocalization critical curve hc(λ), in the (λ,h) plane (cf. Proposi-
tion 2.5: λ is the coupling parameter and h is an asymmetry parameter controlling the mean
of the disorder), has attracted much attention, both in the theoretical physics [9, 14, 22, 25,
26, 28] and in the mathematics literature [1–3, 5, 15, 17, 24]. A point that has to be stressed
is that one can find in the physical literature some predictions on the phase diagram and
notably one can find expressions, claimed to be exact, of the critical curve (see below for
more precision on this). However, these expressions do not coincide and this fact strongly
suggests that the understanding of this transition is very limited (this is confirmed by the
lack of agreement on critical exponents too [9, 20, 22, 28]). In addition, the arguments in
many of the theoretical physics papers that we have mentioned appear not to depend on the
details of the return probabilities, but just on the tail, in fact the arguments are developed
for some large-scale equivalent systems in which the local details are forgotten. One of the
results we present below shows that the critical curve does depend on these details, and at
times even in a very radical way. What (most probably) does not depend on the details of
the polymer and of the disorder is the slope mc of the critical curve at the origin, which
corresponds to weak polymer-solvent coupling.
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Therefore mc is definitely a quantity of great interest for its universal character.
From a mathematical standpoint bounds on the critical line have been established in

[3, 5], but they are not sufficiently precise to settle the controversies between the different
physical predictions (a result on the critical behavior has been proven in [19]; it shows that
the transition is in great generality at least of second order). These bounds in some very
exceptional cases do coincide (but these are really marginal situations, not considered by
physicists). In particular the upper bound follows from an annealing procedure [5]. Very
recently one of us [27] has proven that at large coupling parameter and for unbounded dis-
order the bound in [5] can be improved. Such a result is based on estimates on the fractional
moments of the partition function. Here we will go beyond this result and get upper bounds
that hold for arbitrary coupling parameter and general charge distributions, still by estimat-
ing fractional moments and by adapting an idea first developed in the context of disordered
pinning models [11]. Let us mention that a result close to ours has been recently obtained,
using different techniques, by E. Bolthausen and F. den Hollander [6]. It should be pointed
out that, for copolymer models, constrained annealing techniques have been applied at sev-
eral instances (e.g. [21] and references therein), but it has been shown in [7] that they are
useless to go beyond the bound in [5] on the critical line.

Our purpose is to improve also the lower bounds. Finding lower bounds on hc(λ) amounts
to finding lower bounds on the partition function, and to this aim it is natural to try to guess
what the most favorable polymer configurations are and to keep only those in the partition
sum. We will refer to such a trajectory selection as to a (selection) strategy. However natural
this idea may look, it is difficult to guess strategies which give non-trivial bounds. In [22],
a real-space renormalization procedure was implemented by using a rare-stretch strategy
which takes advantage of atypical regions in the disorder. For some time we have believed
that the strategy of [22] would yield a correct description of the critical curve and the correct
value of mc , even if in mathematical terms such a strategy led only to a lower bound [3]. Such
a belief was later shaken by accurate numerical simulations [8]. In this paper we present
a new rare-stretch strategy which, although not optimal, improves in some situations the
critical curve lower bounds [3] based on the renormalization approach of [22].

Remark 1.1 In the physical literature only models based on symmetric walks have been
considered. However we find that considering more general models helps in a substantial
way in devising new arguments of proof and in understanding the limitations of previous
approaches. Besides, the generalized copolymer model (already introduced and studied in
[15, 18]) is a natural, and very easily defined, disordered model where one can investigate
the effect of disorder on systems for which the associated annealed model has a first order
phase transition.

Finally, we mention that also the situation where the geometry of the regions occupied
by the two solvents is more involved than just two half-planes has been considered, see for
instance [10].

2 The Model and the Results

2.1 The Standard Copolymer Model

The model of copolymers close to a selective interface introduced in [14] is based on the
simple random walk S := {Sn}n=0,1,..., that is the Markov chain characterized by S0 = 0
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and the fact that the increment sequence {Sn+1 − Sn}n=0,1,... is IID with P(S1 = +1) =
P(S1 = −1) = 1/2. The partition function of the model is defined as

ZN,ω := E

[
exp

(
λ

N∑
n=1

(ωn + h) sign(Sn)

)]
, (2.1)

where N is a positive integer, E is the expectation with respect to the random walk trajectory,
λ and h are two constants that can be chosen non-negative without loss of generality, and
ω := {ωn}n=1,2,... is a sequence of real numbers. Since sign(0) is a priori not defined we
stipulate that sign(Sn) = sign(Sn−1) if Sn = 0 (this arbitrary choice appears natural once the
process is decomposed into excursions, see below). Let us also remark that the symbol E just
denotes the normalized sum over the 2N trajectories of the simple random walk. Figure 1
may be of help in order to get some insight.

Definition 2.1 Unless otherwise stated, the sequence ω, referred to as sequence of charges,
is chosen as a typical realization of an IID sequence of law P. We assume M(t) :=
E[exp(tω1)] < ∞ for every t ∈ R, and that E[ω1] = 0 and E[ω2

1] = 1.

A useful observation about this model is that ZN,ω can be expressed in terms of the re-
turn times τ := {τj }j=0,1,... defined iteratively by τ0 = 0 and τj+1 := inf{n > τj : Sn = 0}.

Fig. 1 In the top drawing one finds a trajectory of the standard copolymer model. The simple random walk
bonds, that is the segments linking (n − 1, Sn−1) and (n,Sn), are the monomers and they carry a charge
ωn that is drawn at random, but it is fixed once for all (quenched disorder), while the polymer fluctuates.
Positively charged monomers are energetically rewarded if they lie in the upper half-plane, occupied by
solvent A, while they are penalized if they lie in the lower half-plane (solvent B). The situation is reversed for
negatively charged monomers. If the parameter h is not zero, the model is not symmetric under the exchange
of the solvents. Note that the energetically favored trajectories are the ones that place most of the monomers
in their favored solvent, but such trajectories are necessarily sticking close to the interface between the two
solvents and they are therefore few compared to the trajectories that wander more freely. This leads to an
energy-entropy competition between localized and delocalized trajectories. Observe also that the energy does
not depend on the details of the trajectory between successive visits to 0, so that the model can be schematized
like in the lower figure, that is simply in terms of τ1 = 2, τ2 − τ1 = 6, τ3 − τ2 = 1, τ4 − τ3 = 6, . . . (that are
distances between successive returns to zero of S2n) and of the sign sequence s1 = +1, s2 = +1, s3 = −1,
s4 = −1, s5 = +1, . . . The schematized version of the model can be easily generalized to arbitrary return
laws K(·)
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Note that τ is a random walk itself: it has (positive and) IID increments {τj+1 − τj }j=0,1,...

with a law K(n) = P(τ1 = n) that is explicitly written in combinatorial terms (and, no-
tably, limn→∞ n3/2K(2n) = √

1/(4π)). By using a standard (probabilistic) terminology, we
say that τ is a renewal sequence. Since sign(Sn) is constant inside an excursion {τj + 1,

τj + 2, . . . , τj+1}, it is natural to consider the sequence defined by sj = sign(Sτj ), j ≥ 1.
An immediate consequence of the (strong) Markov property is that s = {sj }j=1,2,... is an IID
sequence of symmetric random variables (taking of course only the values ±1).

Before generalizing the model, let us immediately say that it is technically advantageous
to work with a slightly different definition of the energy (and of the partition function (2.1))
of the model given by

ZN,ω := E

[
exp

(
−2λ

N∑
n=1

(ωn + h)�n

)]
, (2.2)

where �n := [1−sign(Sn)]/2, so �n is the indicator function that the nth-monomer is below
the interface. Since the difference between the terms in the exponent of the expressions in
(2.1) and (2.2) is just λ

∑N

n=1(ωn + h) (in particular, independent of S) the two models are
actually the same and the asymptotic behaviors of ZN,ω and ZN,ω are trivially related.

2.2 The Generalized Copolymer Model

The observation we have just made naturally leads to a generalization of the framework.
We are in fact going to assume that K(·) is a discrete probability density on N, so that∑

n∈N
K(n) = 1, such that for some α > 0

K(n)
n→∞∼ CK

n1+α
, (2.3)

where an

n→∞∼ bn means that limn→∞ an/bn = 1, and CK is a positive constant. We define
then a renewal process τ := {τ0, τ1, . . .}, i.e. a random walk with positive (and independent)
increments such that τ0 = 0 and the sequence {τj − τj−1}j=1,2,... is an IID sequence with
law P(τ1 = n) = K(n) for every n. We also let s = {sj }j be an IID sequence of symmetric
random variables taking values ±1, and for n ∈ N we define �n = (1 − sj )/2 if τj−1 <

n ≤ τj . The partition function of the generalized model is then again (2.2), where now E
denotes the expectation with respect to τ and s.

Note that, strictly speaking, (2.3) is not compatible with the random walk choice which
has only even return times. However, one can always redefine the return times of the simple
random walk as τ/2, and this is of course a trivial change (and α = 1/2).

Remark 2.2 There is no difficulty in relaxing the assumption (2.3), for example by allowing
logarithmic corrections to the asymptotic behavior. For the sake of simplicity, we are going
to stick to assumption (2.3), with the notable exception of Remark 2.7 and Sect. 2.5.

2.3 The Free Energy and the Phase Diagram

The free energy (per unit length) of such a model is

F(λ,h) := lim
N→∞

1

N
E logZN,ω. (2.4)
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Actually, the P(dω)-a.s. limit of the sequence of random variables {N−1 logZN,ω}N exists
and coincides with F(λ,h) (see, e.g., [15, Chap. 4]). We observe that F(λ,h) ≥ 0 because

ZN,ω ≥ E

[
exp

(
−2λ

N∑
n=1

(ωn + h)�n

)
;�n = 0 for n = 1,2, . . . ,N

]

= P (�n = 0, n = 1,2, . . . ,N) = P(s1 = +1, τ1 ≥ N)

= 1

2

∑
n≥N

K(n)
N→∞∼ CK

2αNα
. (2.5)

In more intuitive terms we say that the free energy in the delocalized regime is zero and we
split the phase diagram according to

L = {(λ,h) : F(λ,h) > 0} and D = {(λ,h) : F(λ,h) = 0} . (2.6)

Remark 2.3 Not surprisingly, the proof of the existence of the limit in (2.4) relies on super-
additivity. Super-additivity turns out to be a very crucial tool for our arguments too, so let
us stress that

{
E logZN,ω

}
N

is not a super-additive sequence. Rather one has to consider

Zc
N,ω := E

[
exp

(
−2λ

N∑
n=1

(ωn + h)�n

)
;N ∈ τ

]
, (2.7)

(c for constrained) where N ∈ τ simply means that τn = N for some n. It is easy to see that{
E logZc

N,ω

}
N

is super-additive (and it is just a bit harder to see that (1/N)E logZc
N,ω −

(1/N)E logZN,ω → 0 as N → ∞, so that, when talking of the free energy, we can safely
switch between the two partition functions). Super-additivity says also that F(λ,h) coincides
with supN N−1

E logZc
N,ω and this yields the following characterization:

F(λ,h) > 0 if and only if there exists N such that E logZc
N,ω > 0. (2.8)

This is a powerful tool because it is a finite-volume criterion for localization. It has played a
central role in a number of results, like [8, 17], and it will be, again, very important here.

Remark 2.4 In this work we leave aside any consideration on the copolymer path behavior
and concentrate on free-energy properties. The fact that (λ,h) ∈ L (respectively (λ,h) ∈ D)
does correspond to localized (respectively, delocalized) behavior of the paths of the process
has been addressed in depth elsewhere (e.g., [2, 17, 18] and [15, Chaps. 7 and 8]).

Convexity and monotonicity properties of the free energy entail a number of properties
of the phase diagram that we sum up in the next statement (see [15, Chap. 6] for a proof,
built on results proven in [3, 5]).

Proposition 2.5 (Existence of the critical curve) There exists a continuous, strictly increas-
ing function λ 
→ hc(λ), satisfying hc(0) = 0, such that D = {(λ,h) : h ≥ hc(λ)} (and of
course L = {(λ,h) : h < hc(λ)}).

This note addresses precisely the behavior of hc(·). Let us first recall the known results: in
the next statement we give bounds proven for the standard copolymer model in [5] for what
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concerns the upper bound and in [3] for the lower bound (the straightforward adaptation of
the arguments to cover the generalized model is detailed in [15, Chap. 6]). We set for m > 0

h(m)(λ) := 1

2mλ
log M(−2mλ), (2.9)

where M(t) is given in Definition 2.1 (note that dh(m)(λ)/dλ|λ=0 = m).

Proposition 2.6 For every choice of K(·) satisfying (2.3) we have

h(1/(1+α))(λ) ≤ hc(λ) ≤ h(1)(λ), (2.10)

for every λ ≥ 0. As a consequence,

1

1 + α
≤ lim inf

λ↘0

hc(λ)

λ
≤ lim sup

λ↘0

hc(λ)

λ
≤ 1. (2.11)

Remark 2.7 Upper and lower bounds in (2.10) coincide only if α = 0, but assumption (2.3)
requires α > 0 in order to ensure that K(·) is normalizable. We can set α = 0 if we accept to
relax somewhat (2.3) (cf. Remark 2.2) and if we choose for example K(n) = c/(n(logn)2)

(c such that
∑

n K(n) = 1). Since (2.10) holds also when there are logarithmic corrections
to the power law behavior of K(·), and in particular for α = 0 (cf. [15, Chap. 6]), it is
straightforward to see that hc(λ) = h(1)(λ) for every λ ≥ 0.

2.4 Weak-Coupling Limit, Rare-Stretch Strategy and a Look at the Literature

Much work has been done on the copolymer model, both in the physical and mathematical
literature. In spite of this, the understanding of the model is still very limited. An important
point has been set forth in [5], where it has been shown, for the case of the standard model
(in particular, α = 1/2) and for ω1 binary random variable, that

lim
γ↘0

1

γ 2
F(γ λ, γ h) = φ(λ,h), (2.12)

where

φ(λ,h) := lim
t→∞

1

t
E log E

[
exp

(
−2λ

∫ t

0
1B(t)<0 (dβ(t) + hdt)

)]
, (2.13)

and B and β are two standard Brownian motions, respectively of law P and P. Note that
(2.13) is the partition function of a continuous copolymer model; like for the discrete case it
is easy to see that φ(λ,h) ≥ 0 and once again one can define a localized and a delocalized
regime, which are separated by a continuous critical curve λ 
→ h̃c(λ), i.e. the analog of
Proposition 2.5 holds. The novelty is that from the scaling properties of Brownian motion
there exists a non-negative number mc such that h̃c(λ) = mcλ for every λ ≥ 0. This is not
all: in [5] it is shown that

lim
λ↘0

hc(λ)

λ
= mc, (2.14)

a result which is more subtle than the convergence (2.12) of the free energy.
The results we have just stated, as well as their proofs, have a strong flavor of universality,

in the sense that they are based on the idea that at small coupling (λ small) typical excursions
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are very long (since the simple random walk is null recurrent), and small excursions do not
contribute to the energy, so that the walk can be replaced by a Brownian motion and the sum
of the charges within an excursion can be approximated by a normal variable. This does not
seem to be specific of the simple random walk and binary charges and in fact the results have
been shown to hold for much more general charges [17]. However, the results are (by far)
not a direct consequence of standard invariance principles and the generalization to more
general walks is highly non-trivial.

It would be very interesting to extend the weak-coupling results stated previously by
simply assuming the validity of (2.3) with α = 1/2. We expect in particular (2.12)–(2.14) to
hold in such a generality. More generally, one would like to have the weak-coupling results
for general α ∈ (0,1). Of course the expression (2.13) has to be suitably changed, but we
still expect (2.14) to hold with some mc depending on K(·) only through α.

In spite of the fact that the weak-coupling results we have stated do not go yet as far
as we would like, they clearly point the attention to the slope of the critical curve at the
origin as a quantity of great interest. And, at least for the case α = 1/2, this issue has been
addressed in the physical literature, but without a consensus. In particular in [14] and [28]
it is claimed that mc = 1 (note that mc ≤ 1 by the upper bound in (2.11)) while in [22] and
[26] it is claimed that mc = 2/3 (and we know that mc ≥ 2/3 by the lower bound in (2.11)).
For the standard copolymer model there exists numerical evidence that 2/3 < mc < 1, and
possibly that mc ≈ 0.83 [8] (see also [23]), but until now there is not much clue on how
to estimate this value beyond (2.11). Some of the papers we just mentioned are actually
claiming that hc(λ) = h(m)(λ) for every λ, with m either equal to 2/3 or 1. However only
[22] deals with general disorder laws, while the others are restricted to Gaussian disorder,
for which, incidentally, h(m)(λ) = mλ.

Remark 2.8 In [27] it has been shown that the upper bound in (2.10) can be improved
for all α if λ is large and P(ω1 < x) > 0 for every x (which is true for instance in the
case of Gaussian disorder). This is discussed briefly in Sect. 2.5. On the other hand, in
Proposition 2.11 below we show also that, again for all α, we can find suitable inter-arrival
distributions K(·) for which the lower bound in Proposition 2.6 is not optimal. These results
however do not give any information on the slope of hc(·) at the origin.

For the sequel of the paper it is also important to sketch the idea that leads to the lower
bound in (2.10). We do this with Fig. 2 and its caption. In this strategy, the partition function
is evaluated only on trajectories which are made of very long excursions with returns in
rare stretches where the mean of the charges is atypical. This reduces the complexity of
the model in two ways. On one hand, the charges act only as very rare energetic traps
and, on the other hand, the trajectories gain only the averaged charge of these traps. A toy
version of the copolymer mimicking this behavior has been introduced in [3] and it has been
recently proved [4, 27] that in the strong-disorder limit the simple rare-stretch strategy of
Fig. 2 identifies correctly the asymptotic behavior of its critical line. However, the numerical
simulations we mentioned above show that this strategy does not fully catch the correct
behavior of the copolymer model (2.2).

2.5 New results

Lower Bound: a New Rare-Stretch Strategy A limitation in the rare-stretch strategy de-
scribed in Fig. 2 is in the triviality of the behavior of the polymer in the rare advantageous
stretches (the rich blocks). Designing a better strategy is however not so obvious. Here we
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Fig. 2 The lower bound in (2.10) is proven by using a coarse-graining parameter � (1 � � � N ). We con-

sider the block charges Qj = ∑(j+1)�
n=j�+1 ωn , j = 0,1,2, . . ., and we single out the blocks (rich blocks)

for which Qj ≤ −q� (q is a parameter that is going to be optimized). The sequence {Qj }j is of course
IID, so that the location of the rich blocks is simply given by a Bernoulli trial sequence with parameter
p(�) := P(Q1 ≤ −q�). For � large, p(�) is exponentially small, so that the rich blocks are rare and typically
very spaced. The lower bound in (2.10) is obtained by bounding from below the free energy. This is achieved
by restricting the partition function to the trajectories S visiting the lower half-plane only in correspondence
of the rich blocks, i.e., such that sign(Sn) < 0 if and only if n belongs to a rich block. These trajectories have
very long excursions before returning to rich blocks as depicted in the drawing (the rich blocks are in this
case the 5th, the 12th and the 16th). We refer to [3, 15] for a full proof of the lower bound in (2.10)

are going to present one that is ultimately going back to the original idea in [24] that a neu-
tral environment suffices to localize the polymer (we will have to make this quantitative).
The idea is therefore to look for neutral stretches, i.e. q = 0 (instead of negative stretches
−q < 0), and employ a non-trivial localization strategy in these regions. The most interest-
ing results we have been able to extract from such idea are summarized in the next statement.

Theorem 2.9 For α ≥ 1

lim inf
λ↘0

hc(λ)

λ
≥ 1√

1 + α
. (2.15)

Moreover for α ≥ 0.801 we have

lim inf
λ↘0

hc(λ)

λ
>

1

1 + α
. (2.16)

Of course these results acquire a particular interest when compared with (2.11). We want
to stress that the lower bound on the slope that we are able to establish is rather explicit for
all values of α (see Sect. 3, Proposition 3.2), in particular we are able to establish (2.16) for
every α > α0, with 2(1 +α0)A(α0) = 1, where A(α) is the expression in the right-hand side
of (3.9). The explicit bound given in the statement comes from an explicit lower bound on
A, but A can be computed via numerical integration and one sees that α0 is smaller than (but
close to) 0.65. In Remark 3.3 we are going to explain that there is very little hope to make
this strategy work for α = 1/2. Nevertheless, this shows that there are better strategies than
the rare stretch strategy leading to the 1/(1 + α) bound on the slope.

Upper Bound: Fractional Moments and the Slope The upper bound in (2.10) is just a
consequence of the annealed inequality for the free energy:

1

N
E logZN,ω ≤ 1

N
log EZN,ω. (2.17)

A natural idea to go beyond simple-minded annealing is to observe that, again thanks to
Jensen’s inequality, for every γ > 0

1

N
E logZN,ω ≤ 1

Nγ
log E

[
(ZN,ω)γ

]
. (2.18)
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Since for γ = 1 one recovers annealing (2.17) and for γ ↘ 0 (2.18) becomes an equality, it
is natural to hope that non-trivial information can be obtained estimating the γ -moments of
the partition function, with 0 < γ < 1. This is precisely the approach which was followed in
[27], and indeed it turns out that at least for λ large enough and assuming that the random
variables ωn are unbounded (more precisely, that P(ω1 < x) > 0 for every x) one can prove
that hc(λ) < h(1)(λ) (of course, this says nothing about the critical slope). Let us also recall
that in [27, Corollary 3.9] the same method allowed to prove that if

∑
n≥1 K(n) < 1 (τ is

transient, a case that we are not considering here) then hc(λ) < h(1)(λ) for every λ > 0 and
lim supλ↘0 hc(λ)/λ < 1.

Two important ingredients were added in [11, 16] where, in the somewhat different con-
text of disordered pinning/wetting models, it was realized first of all that it is actually suffi-
cient to control the fractional moments of ZN,ω up to N of the order of the correlation length
of the annealed system, and secondly that this control can be obtained through a change-of-
measure argument. Here we generalize these arguments to the case of the copolymer, and
our main result is the following:

Theorem 2.10 Choose K(·) satisfying (2.3). If α > 1

lim sup
λ↘0

hc(λ)

λ
< 1. (2.19)

If 0 < α ≤ 1 there exists a positive constant c such that, for 0 < λ ≤ 1

hc(λ) ≤ h(1)

(
λ

(
1 − c

| log cλ2|
))

. (2.20)

Moreover, for every α > 0 and λ > 0 one has hc(λ) < h(1)(λ).

A Further Remark on the Critical Curve We complete the list of new results with the
following one that becomes of interest in view of the various conjectures that one finds in
the literature: in short, it says that in general hc(·) heavily depends on the details of K(·)
and it is certainly not simply a function of α.

Proposition 2.11 For every α > 0, every λ > 0 and every ε > 0 we can find K(·) that
satisfies (2.3) such that hc(λ) > h(1)(λ) − ε.

The proof is short and it is of help in understanding the result, so we give it right here.

Proof Consider the model with α = 0 (cf. Remark 2.7, call K̃(·) the particular return prob-
ability of that model). Fix λ > 0 and ε > 0: we have F(λ,h(1)(λ) − ε) > 0, so that, by (2.8),
there exists N ∈ N such that E logZc

N,ω > 0. But such a result is unchanged if we modify
the definition of K̃(n) for n > N , since Zc

N,ω itself is unchanged. Since (2.3) depends only
on the tail of K(·), we are done. �

In its simplicity, Proposition 2.11, in combination with the other results we have stated or
that can be found in the literature, can be used to rule out a number of conjectures that have
been made or that one may be tempted to make. For example, when the disorder is Gaussian
the critical line in general is not a straight line with a slope depending only on α (recall
Remark 2.8). More generally, it casts serious doubts on the fact that the critical line coincides
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with h(mc)(λ) for every λ regardless of the details of K(·), even if numerical evidence in
[8] suggested that the critical line could coincide with h(mc)(·) in the particular case of the
standard copolymer model.

For the remainder, we stress that we systematically develop the arguments first for ω1 ∼
N (0,1) and then give the modifications needed to deal with the general charge distributions
of Definition 2.1.

3 Neutral Stretches and a Lower Bound Strategy

In this section we are going to give a proof of Theorem 2.9.

Proposition 3.1 Let us consider the general copolymer model with ω1 ∼ N (0,1). For every
λ > 0 we have

hc(λ) ≥
√

2F(λ,0)

1 + α
. (3.1)

Proof For � ∈ N let us define the random variable

F�(λ,h;ω) := 1

�
log E

[
exp

(
−2λ

�∑
n=1

(ω + h)�n

)
;� ∈ τ

]
. (3.2)

We now claim that for every δ > 0 we have

lim inf
�→∞

1

�
log P

(
F�(λ,h;ω) ≥ (1 − δ)F(λ,0)

)≥ −1

2
h2. (3.3)

To see this, we first observe that if P�,h is the law of (ω1 − h,ω2 − h, . . . ,ω� − h), then

S
(
P�,h|P�,0

) := E�,h

[
log

(
dP�,h

dP�,0

)]
= 1

2
�h2. (3.4)

We now recall the entropy inequality

log

(
P�,0(E)

P�,h(E)

)
≥ − 1

P�,h(E)

(
S
(
P�,h|P�,0

)+ 1

e

)
, (3.5)

which holds for arbitrary non-null events [15, Appendix A.2], and by choosing for E the
event in the left-hand side of (3.3) (call it E�) we see that

P�,h (E�) = P�,0

(
F�(λ,0;ω) ≥ (1 − δ)F(λ,0)

)
, (3.6)

where of course in the right-hand side we can write P instead of P�,0. But the existence
of the infinite volume limit (2.4), together with the fact that F(λ,0) > 0 for λ > 0 (which
follows from Proposition 2.6), guarantees that lim�→∞ P�,h (E�) = 1 and this, combined of
course with (3.4) and (3.5), yields (3.3).

The rest of the argument follows the line of [3], alternatively see [15, Chap. 6], and it is
based on chopping the sequence of charges into portions of length � and checking whether
the charge sub-sequence in the block is in E� (these are the rich blocks), namely whether
(ωj�+1,ωj�+2, . . .) ∈ E� for j = 0,1, . . . . These are of course independent events giving
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Fig. 3 The novel strategy, compare with Fig. 2, is based on targeting q = 0 regions, that is the (four) rich
blocks are in this case the ones where Q� = o(�). This is actually implemented in the proof by a change of
measure argument. More precisely, the rich blocks in the Gaussian case are the ones in which the charges
look like the original charges ω shifted down of h, so that ω + h is a sequence of centered random variables.
Once again the lower bound is achieved by considering trajectories that stay in the upper half-plane outside
of the rich blocks and that touch the interface exactly at the beginning and the end of a rich block. In a rich
block, however, we keep the contribution of all the trajectories, that can therefore oscillate between the two
solvents in order to optimize the energetic gain

rise to a Bernoulli sequence of parameter p(�) := P(E�). Once ω is chosen, the rich blocks
are identified and one estimates from below ZN,ω by restricting to path configurations that
visit the sites j� and (j + 1)� for all j ’s for which the j th block is rich (and of course
(j + 1)� ≤ N ) and that do not enter the lower half-plane outside of rich blocks (see Fig. 3
and its caption for more details). The free energy bound one obtains is

F(λ,h) ≥ p(�)

[
(1 − δ)F(λ,0) − (1 + α)

h2

2
+ o�(1)

]
, (3.7)

therefore F(λ,h) > 0 if the term between square brackets is positive. Since � can be chosen
arbitrarily large and (then) δ arbitrarily small, we obtain (3.1). �

The result we have just stated becomes particularly effective when coupled with the next
statement.

Proposition 3.2 Choose K(·) that satisfies (2.3) and ω1 as in Definition 2.1.

(1) If α ≥ 1 then

lim
λ↘0

1

λ2
F(λ,0) = 1

2
. (3.8)

(2) If α ∈ (0,1) then for every κ > 0 we have

lim inf
λ↘0

1

λ2
F(λ,0) ≥ κ

�(1 − α)

∫ ∞

0

exp(−t)

t1+α
E

[
log cosh

(
z
√

t/κ
)]

dt −κ
1 − α

α
, (3.9)

where z is a standard Gaussian random variable N (0,1) and �(u) = ∫∞
0 dt tu−1e−t .

Proof The case α > 1 has been already considered in [15, Chap. 6], but we detail it
here for completeness. It is slightly more intuitive in this argument to work with ZN,ω of
(2.1) (where it is understood that sign(Sn) := 1 − 2�n), and of course log(ZN,ω/ZN,ω) =
exp(λ

∑N

n=1 ωn) = exp(o(N)), since in this proof h = 0. The fact that, for every α > 0,
lim supN→∞(1/N)E logZN,ω ≤ log M(λ) is an immediate consequence of Jensen’s inequal-
ity and of course log M(λ) ∼ λ2/2 as λ ↘ 0. For what concerns the inferior limit, we still
apply Jensen’s inequality, but not for switching E and log, rather log and E. Note that, with
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the notation ω(j, k) :=∑k

n=j+1 ωn,

ZN,ω ≥ E
[ ∏

j :j≥1,τj ≤N

cosh
(
λω(τj−1, τj ]

)]
, (3.10)

which is obtained by integrating out the random signs s = {sj }j (the inequality is due
to neglecting the last, incomplete, excursion, when present). With the notation ψ(t) :=
log cosh(t), we get then

1

N
E logZN,ω ≥ 1

N
E
[ ∑

j :j≥1,τj ≤N

Eψ
(
λω(τj−1, τj ]

)] N→∞−→ 1

E[τ1]EEψ (λω(0, τ1]) , (3.11)

where we have used also the law of large numbers. Now we observe that, by the integrability
properties of ω1, we have that for every n

lim
λ↘0

1

λ2
Eψ (λω(0, n]) = 1

2
E
[
(ω(0, n])2

]= n

2
. (3.12)

Therefore, by applying Fatou’s Lemma we infer from (3.11) that

lim inf
λ↘0

1

λ2
F(λ,0) ≥ 1

E[τ1]
∑

n

n

2
K(n) = 1

2
, (3.13)

and the proof of the case α > 1 is complete.
The case α ≤ 1 is more delicate and one has to go beyond the direct use of Jensen’s

inequality. The estimates can be performed by using a change-of-measure argument via a
standard entropy inequality (see e.g. [15, (A.10)]). The case α < 1 is fully detailed in [15,
(6.17)] (the proof in there follows from sharpening an argument that appears in [5]). The
case α = 1 is however not treated for the specific question we address here, so we give a
proof (which is close to the proof with which one establishes (3.9)).

Set α = 1. Given b > 0 define Kb(n) = K(n) exp(−bn)/(
∑

m K(m) exp(−bm)). For-
mula (6.13) in [15] tells us that for every b > 0

F(λ,0) ≥ 1

mb

∑
n

Kb(n)E
[
ψ(λω(0, n])]− 1

mb

∑
n

Kb(n) log

(
Kb(n)

K(n)

)

=: e(b) − s(b), (3.14)

where mb =∑
n nKb(n). In [15, Proposition B.2] it is shown that s(b) = o(b) (for the case

we are considering here, the result is a direct consequence of
∑

n exp(−bn)/n ∼ − logb, as
b ↘ 0). Moreover by using

log cosh(x) ≥ 1

2
x2 − 1

12
x4, x ∈ R, (3.15)

and, by setting b = λ2, from (3.14) we obtain

1

λ2
F(λ,0)

≥ 1

2mλ2

∑
n

Kλ2(n)E

[(
n∑

j=1

ωj

)2]
− λ2

12mλ2

∑
n

Kλ2(n)E

[(
n∑

j=1

ωj

)4]
− s(λ2)

λ2
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≥ 1

2mλ2

∑
n

Kλ2(n)n − cλ2

mλ2

∑
n

Kλ2(n)n2 − s(λ2)

λ2

≥ 1

2
− c′λ2

mλ2

∑
n

exp(−λ2n) − s(λ2)

λ2
, (3.16)

where c is a constant that depends only on the fourth moment of ω1 and c′ comes from
approximating K(n) with its limit behavior and from neglecting

∑
n K(n) exp(−λ2n) in the

denominator (say, for λ ≤ 1). Therefore lim infλ↘0 F(λ,0)/λ2 ≥ 1/2 since mλ2 diverges as
λ ↘ 0 and s(λ2)/λ2 tends to zero, as pointed out before. �

Remark 3.3 For α = 1/2, from a numerical estimation of the right-hand side of (3.9),
we obtain that l := lim infλ↘0 F(λ,0)/λ2 > 0.227. On the other hand, one would need
l > 1/3 for our new strategy to be better than the older one, i.e., to be able to prove that
lim infλ↘0 hc(λ)/λ > 2/3 with our method (just recall (3.1)). An evaluation of l by using the
transfer matrix method (with the software developed in [8]) for small values of λ suggests
that l is below 1/3, even if it looks rather close to it, which in particular tells us that the
neutral-stretch strategy is probably better than the old one down to α very close to 1/2.

Proof of Theorem 2.9, Gaussian charges Formula (2.15) is an immediate consequence of
Propositions 3.1 and 3.2(1). Formula (2.16), for α < 1 but close to 1, follows from Propo-
sitions 3.1 and 3.2(2), plus the observation that the limit of the right-hand side of (3.9) as
α ↗ 1 is equal to 1/2 (this has been already pointed out and detailed in [15, Remark 6.4]).
A more quantitative bound can be obtained as follows. By using the inequality (3.15), one
can bound from below the right-hand side in (3.9) by a quantity that can be explicitly com-
puted:

lim inf
λ↘0

1

λ2
F(λ,0) ≥ 1

2
− 1 − α

4κ
− κ

(
1 − α

α

)
κ=√

α/2= 1

2
− 1 − α√

α
, (3.17)

where we used that �(2 − α) = (1 − α)�(1 − α). From (3.1) we see that (2.16) holds
if lim infλ↘0 F(λ,0)/λ2 > 1/(2(1 + α)), so that from (3.17) we have that (2.16) holds if
α > 0.800981 . . . . A numerical evaluation of the full expression (3.9) shows that (2.16)
holds down to α = 0.65. �

Proof of Theorem 2.9, general charges As explained in Sect. 2.4, one expects a universal
behavior for λ ↘ 0 and the Gaussian bounds should remain in force. And in fact the strategy
that leads to Proposition 3.1 can be generalized without much effort, but Proposition 3.1
becomes more complex to state and somewhat involved. It is therefore preferable to ap-
proach the problem under a slightly different angle, which in the end is just dealing with
Propositions 3.1 and 3.2 at the same time.

The key point is to replace the change of measure used in the Gaussian case with the
standard tilting procedure of Cramèr Large Deviation Theorem (which coincides with a
shift of the mean for Gaussian variables). We therefore modify the law of (ω1, . . . ,ω�) by
introducing the relative density f�(ω) := ∏�

j=1 exp(μhωj )/M(μh)
�, and μh is chosen so

that E[f�(ω)ω1] = −h. The target event E� in (3.3) should now be replaced by

E� = {ω : F�(λ,h;ω) ≥ (1 − δ)̃Fh(λ)} , (3.18)

where F̃h(λ) is the free energy of the model with IID charges ω̃, with the law of ω̃1 given
by the law of ω1 times the density exp(μhω1)/M(μh). Note that the new charges ω̃ have
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mean −h and, in general, their variance is not equal to one, but it converges to 1 as h

vanishes. This induces a number of changes that lead to replacing (3.7) by

F(λ,h) ≥ p(�)
[
(1 − δ)̃Fh(λ) − (1 + α)�(−h) + o�(1)

]
, (3.19)

where �(·) is the Cramèr functional of the law of ω1, i.e. the Legendre transform of M(·).
It is well known that �(−h) ∼ h2/2 as h ↘ 0, thus for every ε > 0 there exists hε > 0 such
that (λ,h) ∈ L if h < hε and

(1 − δ)̃Fh(λ) ≥ (1 + α)(1 + ε)
h2

2
. (3.20)

At this point, F̃h(λ) can be bounded from below precisely as it is done in Proposition 3.2.
Choosing h = mλ, the argument in that case always leads to estimating the moments (in fact,
the second and the fourth moments suffice) of ω1, that has to be replaced with the centered
variable ω̃1 − h of variance 1 + O(λ) (and E[(ω̃1 + h)4] = E[ω4

1](1 + O(λ)).
This completes the proof of Theorem 2.9. �

4 Fractional Moments and Upper Bounds

In this section we prove Theorem 2.10.
We use the short-cut notation ZN := Zc

N,ω and Za,b := Zc
(b−a),θaω for a < b, where θ is

the shift operator such that (θω)n = ωn+1. We start by pointing out that, by integrating out
the {sj }j variables, we can write

ZN = E
[ ∏

j :τj ≤N

ϕ
(
λω(τj−1, τj ] + λh(τj − τj−1)

);N ∈ τ

]
, (4.1)

with ϕ(t) = (1 + exp(−2t))/2 and ω(j, k] :=∑k

n=j+1 ωn.
One of the two key ingredients for the proof is the following decomposition of the par-

tition function, which is just based on partitioning the space of trajectories according to the
location of the first point of τ after k (call it j ) and the last point before k (call it i):

ZN =
N∑

j=k

Zj,N

k−1∑
i=0

K(j − i)ϕ
(
λω(i, j ] + λh(j − i)

)
Zi. (4.2)

The second key ingredient is the use of fractional moments, so we set for 0 < γ < 1

AN := E
[
(ZN)γ

]
, (4.3)

(we do not make the γ -dependence explicit in the notation). From (4.2) and the basic in-
equality (∑

ai

)γ ≤
∑

a
γ

i , (4.4)

that holds whenever ai ≥ 0 for every i if 0 < γ < 1, we obtain

AN ≤
N∑

j=k

AN−j

k−1∑
i=0

B(j − i)Ai, (4.5)
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where

B(j) := K(j)γ
E
[(

ϕ
(
λω(0, j ] + λhj

))γ ]
. (4.6)

For later use we point out that, again thanks to (4.4),

B(j) ≤ K(j)γ 2−γ
[
exp

(
j
(

logM(−2γ λ) − 2γ λh
))+ 1

]
. (4.7)

Lemma 4.1 If there exist γ ∈ (0,1) and k ∈ N such that

∞∑
j=k

k−1∑
i=0

B(j − i)Ai ≤ 1, (4.8)

then supN AN < ∞.

Proof Combining (4.5) and the hypothesis (4.8) one readily obtains for every N ≥ k

AN ≤ max
j=0,...,N−k

Aj . (4.9)

If one sets A�
k := maxj=0,...,k−1 Aj , then from (4.9) one has AN ≤ A�

k for every N . �

Remark 4.2 Note that if supN AN < ∞ one has

lim
N→∞

1

N
E
[
logZN

]≤ lim
N→∞

1

γN
logAN = 0 (4.10)

and therefore F(λ,h) = 0.

4.1 Gaussian Disorder and α > 1

Let us set α > 1 and ω1 ∼ N (0,1), and fix λ0 < ∞. We are going to show that if ρ < 1 is
sufficiently close to one, F(λ,ρλ) = 0 for λ ≤ λ0. To this purpose we fix γ < 1 such that
γ (1 + α) > 2 and notice that

log M(−2γ λ) − 2γρλ2 = 2γ λ2(γ − ρ) < 0, (4.11)

provided that ρ > γ . Therefore, thanks also to (4.8) and (4.7), it is sufficient to show that

∞∑
j=k

k−1∑
i=0

K(j − i)γ Ai ≤ 2γ−1. (4.12)

Computing the sum over j , we see that there exists C > 0 depending on K(·) such that the
left-hand side in (4.12) is smaller than

C

k−1∑
i=0

Ai

(k − i)γ (α+1)−1
. (4.13)

In view of the last two formulas we see that it is sufficient to show that there exist ρ ∈ (γ,1)

such that for λ ≤ λ0 and h = ρλ it is possible to find k ∈ N such that

k−1∑
i=0

Ai

(k − i)γ (α+1)−1
≤ c1 := 2γ−1

C
. (4.14)
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We choose k to be equal to the integer part of 1/(λ2(1−ρ)) (but there is no loss of generality
in choosing 1/(λ2(1 − ρ)) ∈ N, so we do that) and we note that k is large (uniformly in
λ ≤ λ0) if ρ is close to 1. Hence, by Jensen’s inequality we have

Ai ≤ [EZi]γ ≤ exp
(
2i(1 − ρ)λ2γ

)≤ e2γ , (4.15)

for i ≤ k. Therefore, if R is an integer number smaller than k

k−R∑
i=0

Ai

(k − i)γ (α+1)−1
≤ e2γ

∞∑
l=R

1

lγ (α+1)−1
. (4.16)

The right-hand side can be made arbitrarily small by choosing R large (of course this re-
quires k to be large, but this is again the requirement of choosing ρ close to 1), because γ

is such that γ (α + 1) > 2. We choose R large enough so that such an expression is smaller
that c1/2. It suffices now to prove that

k−1∑
i=k−R+1

Ai

(k − i)γ (α+1)−1
≤ c1/2, (4.17)

for ρ sufficiently close to 1. In analogy with [11], we are going to shift the random vari-
ables ωi in order to bound Ai . We define the shifted charges by introducing the new law PN,y

dPN,y

dP
(ω) = exp

(
y

N∑
i=1

ωi − Ny2/2

)
, (4.18)

and control Ai by applying the Hölder inequality with p = 1/γ and q = 1/(1 − γ ):

AN = EN,y

[
(ZN)γ dP

dPN,y

(ω)

]
≤ (

EN,y [ZN ]
)γ

exp

(
γ

2(1 − γ )
y2N

)
. (4.19)

We apply (4.19) with y = λ(1 − ρ)1/2 = 1/
√

k, N = i and k − R < i < k. Note that with
this choice the exponential term in the right-most side of (4.19) is bounded by the constant
exp(γ /(2(1 − γ ))), that Ei,y[Zi] coincides with

E

[
exp

(
2λ2

(
(1 − ρ) − (1 − ρ)1/2

) i∑
n=1

�n

)
; i ∈ τ

]
(4.20)

and that for ρ close to 1

2λ2
(
(1 − ρ) − (1 − ρ)1/2

)≤ −λ2(1 − ρ)1/2. (4.21)

Remarking that

min
k−R<i<k

iλ2(1 − ρ) ≥ 1/2, (4.22)

for k large, we see that the quantity in (4.20) can be made arbitrarily small, uniformly in
λ ≤ λ0 and k − R < i < k by choosing ρ suitably close to 1, because

lim
N→∞

E

[
exp

(
− q

N

N∑
n=1

�n

)]
= exp(−q/2), (4.23)
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which follows from the Dominated Convergence Theorem since (1/N)
∑N

n=1 �n tends al-
most surely to 1/2. The latter statement follows by observing that if we set YN := max{n :
τn ≤ N} (number of renewals up to N ), by the law of large numbers we have that YN/N

tends a.s. to 1/E[τ1] as N tends to infinity and

1

N

N∑
n=1

�n ≥ YN

N
· 1

YN

YN∑
j=1

(τj − τj−1)1sj =−1. (4.24)

Since {(τj −τj−1)1sj =−1}j=1,2,... is an IID sequence and E[τ11s1=−1] = E[τ1]/2, again by the
law of large numbers the right-hand side in (4.24) converges almost surely to 1/2. We can
reverse the inequality in (4.24) by summing over j up to YN + 1, so that (4.23) is proven.

On the other hand

k−1∑
i=k−R+1

Ai

(k − i)γ (α+1)−1
≤ max

k−R<j<k
Aj

∞∑
i=1

1

iγ (α+1)−1
, (4.25)

so that, since the sum converges, the right-hand side can be made arbitrarily small, hence
smaller than c1/2, and we are done.

The fact that hc(λ) < h(1)(λ) for every λ > 0 is a direct consequence of the fact that λ0 is
arbitrary.

4.2 Gaussian disorder and α < 1

Again, fix λ0 < ∞. We let h = h(λ) = λ(1 − c

| log cλ2| ) and we aim at proving (4.8) for some

c > 0, uniformly in 0 < λ ≤ λ0. We choose k to be equal to (the integer part of) | log cλ2|
cλ2 and

γ = 1 − (logk)−1. Notice that k can be made arbitrarily large (and therefore γ close to 1)
uniformly for all λ ≤ λ0 choosing c small enough. Therefore, we will consider that k is large
when we need to.

We use (4.7) to find a simple bound on B(·). Since

log(M(−2γ λ)) − 2γ λh(λ) = 2γ λ2

(
γ − h(λ)

λ

)
≤ 0, (4.26)

when c is well chosen, we have

B(j) ≤ K(j)γ 21−γ . (4.27)

Therefore the condition (4.8) will be fulfilled if we can show that

∞∑
j=k

k−1∑
i=0

Ai

(j − i)(α+1)γ
≤ c2 (4.28)

for a suitable constant c2 which is independent of c or λ. First of all we get rid of γ in the
denominator as follows:

∞∑
j=k

1

(j − i)(α+1)γ
=

∞∑
j=(k−i)

j−(α+1)γ (4.29)
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≤
k6∑

j=(k−i)

j−(α+1) exp

(
(α + 1) log j

logk

)
+

∞∑
j=k6+1

j−(1+ α
2 ) ≤ c3(k − i)−α,

(4.30)

for some constant c3 < ∞, provided c is such that (α + 1)γ ≥ 1 + (α/2). Hence (4.28) will
be satisfied if

k−1∑
i=0

Ai

(k − i)α
≤ c2

c3
. (4.31)

To estimate Ai we use (4.19) with y = √
cλ/| log cλ2|, N = i and i < k. With these settings,

one can check that the exponential term in the right-hand side of (4.19) is bounded by a
constant c4 that does not depend on λ or c (and therefore will be harmless), and that Ei,y[Zi]
coincides with

E

[
exp

(
2

λ2

| log cλ2|
(
c − √

c
) i∑

n=1

�n

)
; i ∈ τ

]
≤ E

[
exp

(
− i√

ck

∑i

n=1 �n

i

)
; i ∈ τ

]

(4.32)

for c small enough. The last expression is in any case smaller than P[i ∈ τ ], which is itself
bounded above by c5i

α−1 for some constant c5 depending on K(·) (see [12, Theorem B]).
We need a better upper bound for large i. This is provided by:

Lemma 4.3 Assume that 0 < α ≤ 1. Then,

lim
q→∞ lim sup

N→∞
E

[
exp

(
− q

N

N∑
n=1

�n

)∣∣∣∣∣N ∈ τ

]
= 0. (4.33)

We fix a small a > 0, and consider ak + 1 ≤ i < k. Since therefore i/k > a, thanks to
Lemma 4.3 one deduces that, if one chooses c sufficiently small (how small, depending
on a), the quantity in the right-hand side of (4.32) is bounded above by aP[i ∈ τ ].

We can summarize our result concerning Ai as follows:

Ai ≤
{

(P(i ∈ τ))γ ≤ c6i
α−1 for i ≤ ak,

(aP(i ∈ τ))γ ≤ c6a
γ iα−1 ≤ c6a

γ+α−1kα−1 for ak + 1 ≤ i ≤ k − 1,
(4.34)

where in both cases we used that i1−γ ≤ c7 for i ≤ k. Hence

ak∑
i=0

Ai

(k − i)α
≤ c8a

α and
k−1∑

i=ak+1

Ai

(k − i)α
≤ c9a

γ+α−1, (4.35)

where we just used the previous inequalities to estimate Ai . Since a can be chosen arbitrarily
small, (4.31) is satisfied.

Proof of Lemma 4.3 for 0 < α < 1 First of all, we claim that it is sufficient to prove (4.33)
for the unconditioned measure, i.e., that

lim
q→+∞ lim sup

N→∞
E

[
exp

(
−q

∑N

n=1 �n

N

)]
= 0. (4.36)
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Indeed, with XN := max{n = 0,1, . . . ,N/2 : n ∈ τ } (last renewal epoch up to N/2), one has

E

[
exp

(
−q

∑N

n=1 �n

N

)∣∣∣∣∣N ∈ τ

]
≤ E

[
exp

(
−q

∑N/2
n=1 �n

N

)∣∣∣∣∣N ∈ τ

]

=
N/2∑
k=0

E

[
exp

(
−q

∑N/2
n=1 �n

N

)∣∣∣∣∣XN = k

]
P
(
XN = k

∣∣N ∈ τ
)

(4.37)

where we used the renewal property in the second step. Next, it is not difficult to see that for
every k = 0,1, . . . ,N/2

P
(
XN = k

∣∣N ∈ τ
)≤ c10P (XN = k) (4.38)

(this is detailed for instance in the proof of [11, Lemma 4.1]) and the claim follows.
To show (4.36), note that, again with the notation YN := max{n : τn ≤ N}, for every

ε ∈ (0,1) we have

P
(

YN

Nα
≤ ε

)
= P (τεNα ≥ N) = P

(
τεNα

(εNα)1/α
≥ ε−1/α

)
N→∞−→ Gα(ε

−1/α), (4.39)

where we have assumed εNα ∈ N and Gα(·) is the integrated tail probability function of an
α-stable variable, see [13, Theorems 1 and 2, pp. 448–449] from which we extract also that

Gα(ε
−1/α)

ε↘0∼ εCK/�(1 − α) (recall (2.3)). Therefore

P
(

YN

Nα
≤ ε

)
≤ 2CKε

�(1 − α)
, (4.40)

for N sufficiently large and ε ∈ (0,1). On the other hand

E

[
exp

(
− q

N

N∑
n=1

�n

)]
≤ E

[
YN∏
i=1

(
exp(−q(τi − τi−1)/N) + 1

2

)]

≤ E

[
εNα∏
i=1

(
exp(−q(τi − τi−1)/N) + 1

2

)]
+ P

(
YN

Nα
≤ ε

)

≤ E
[

exp(−qτ1/N) + 1

2

]εNα

+ 2CKε/�(1 − α). (4.41)

Observe that

1 − E
[

exp(−qτ1/N) + 1

2

]
N→∞∼ CKqα

2αNα
�(1 − α), (4.42)

so we have that for some constant c11(α) (which depends only on α)

lim sup
N→∞

E

[
exp

(
− q

N

N∑
n=1

�n

)]
≤ exp (−c11(α)(CKε)qα) + 2CKε

�(1 − α)

≤ 4
(logq)2

qα�(1 − α)
, (4.43)
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where in the last step we have chosen CKε = (logq)2/qα and we assumed that q ≥ q0(α)

with q0(α) is sufficiently large. The proof of Lemma 4.3 for 0 < α < 1 is therefore com-
plete. �

4.3 Gaussian Disorder and α = 1

The proof is very similar to that of the case α < 1, and therefore we point out only the
necessary modifications. No changes are needed up to formula (4.32) and, again, we let
a be a small positive number. To avoid repetitions, it will be understood that c is chosen
sufficiently small (how small depends on a), so that 1/k and 1 − γ = 1/ logk can be made
arbitrarily small with a fixed. Using simply the fact that Ai ≤ c12, we obtain in analogy with
the first bound of (4.35)

ak∑
i=0

Ai

(k − i)
≤ 2c12a. (4.44)

As for the values i > ak, we use the fact that (see [15, Theorem A.6])

P(N ∈ τ)
N→∞∼ c13

logN
(4.45)

and we claim that Lemma 4.3 still holds for α = 1 (this will be proven in a while) so that,
in analogy with (4.34), Ai ≤ aγ P(i ∈ τ)γ for all ak < i < k. Then, via (4.45) and recalling
that γ = 1 − 1/ log k,

k−1∑
i=ak+1

Ai

(k − i)
≤ c14 logk max

ak<i<k
Ai ≤ c15a

γ (4.46)

where we used also the fact that, choosing c small enough, we can assume log k/

(logak) < 2. This concludes the proof since (4.31) is satisfied if a is small.

Proof of Lemma 4.3 for α = 1 Again, it is sufficient to prove the claim for the unconditioned
measure, i.e., to show (4.36). If we define the event

EN :=
{
(τi − τi−1) ≤ N√

logN
for every i ≤ YN + 1

}
, (4.47)

we have

E

[
exp

(
−q

∑N

n=1 �n

N

)]
≤ E

[∏
i≤YN

(
1 + e−q(τi−τi−1)/N

2

)]

≤ E
[
e− q

4N
τYN 1{EN }

]+ P
(
Ec

N

)
, (4.48)

for N sufficiently large (we simply used that maxi≤YN
(τi − τi−1)/N tends to 0 for N → ∞

if EN is realized). Note also that, by the definition of EN , τYN
/N ≥ 1/2 for N large if EN is

realized. Therefore,

lim sup
N→∞

E

[
exp

(
−q

∑N

n=1 �n

N

)]
≤ e− q

8 + lim sup
N→∞

P
(
Ec

N

)
. (4.49)
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To show that the probability of Ec
N tends to zero with N , we start by observing that from the

tail behavior of K(·) it follows that

P
(

there exists i ≤ N

(logN)3/4
such that(τi − τi−1) ≥ N√

logN

)
≤ c16

(logN)1/4
. (4.50)

On the other hand,

lim
N→∞

P
(

YN ≥ N

(logN)3/4

)
≤ (logN)3/4

N
E[YN ] = (logN)3/4

N

N∑
i=1

P(i ∈ τ)

≤ c17

(logN)1/4
, (4.51)

where we used (4.45). From (4.50)–(4.51) we directly see that limN→∞ P(Ec
N) = 0 and the

proof is complete. �

4.4 Proof of Theorem 2.10: the General Case

Once again, going beyond the case of Gaussian disorder requires only a bit of care in some
steps. In both case (α > 1 and α ≤ 1), we have to prove

hc(λ) ≤ h(1)(ρλ) for every λ ≤ λ0, (4.52)

where ρ is a fixed constant, chosen close to 1, in the case α > 1 (we can get the slope result
from it then), and ρ = ρ(λ) = 1 − c

| log cλ2| for a small c for the case α ≤ 1. We take here a
quick look at what needs to be changed from the proof of the Gaussian case.

Precisely (4.11), (4.26) have to be replaced by the observation that

log M(−2γ λ) − 2γ λh(1)(ρλ) = 2γ λ
[
h(1)(γ λ) − h(1)(ρλ)

]
, (4.53)

and that the right-hand side is negative if ρ > γ because h(1)(·) is increasing. For what
concerns instead (4.15) (and the same bound has to be used for (4.20) and (4.32)) the bound
one has to use are

log M(−2λ) − 2λh(1)(ρλ) = log M(−2λ) − 1

ρ
log M(−2ρλ)

≤ (1 − ρ) max
�∈[ρ,1]

∣∣∣∣ d

d�
gλ(�)

∣∣∣∣ , (4.54)

where gλ(�) := �−1 log M(−2λ�). Since λ ∈ (0, λ0], one directly verifies that the rightmost
term in (4.54) is bounded by C(λ0)λ

2, where C(λ0) is a positive constant.
Another point in which the Gaussian character of the disorder enters is in the shifting

procedure of (4.18) and (4.19) that gives (4.20) and (4.32). The shift has to be replaced by
a tilt and one reduces to estimates that, except for constants that depend on the law of the
disorder, are the same as in the Gaussian case (these steps are fully detailed for another
model in [11, Appendix A.1 and Sect. 3] and it is not very difficult to adapt them to this
proof). �
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Note Added in Proof Theorem 2.9 can be easily improved for α > 3. In fact lim infλ↘0 hc(λ)/λ ≥ 1/2 if
α > 1 simply because

1

N
E logZN,ω ≥ −hλ + 1

N
E

∑
j :j≥1
τj ≤N

E[ψ(λh(τj − τj−1) + λω(τj−1, τj ])]

N→∞→ −hλ + 1

E[τ1] EEψ(hλτ1 + λω(0, τ1]),

(which is analogous to (3.11)) and because (3.12) still holds with (ψ(λω(0, n]) replaced by ψ(λhn +
λω(0, n]), if h = ((λ).
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